Spatial distribution of synaptically activated sodium concentration changes in cerebellar Purkinje neurons.

نویسندگان

  • J C Callaway
  • W N Ross
چکیده

The spatial distribution of Na(+)-dependent events in guinea pig Purkinje cells was studied with a combination of high-speed imaging and simultaneous intracellular recording. Individual Purkinje cells in sagittal cerebellar slices were loaded with either fura-2 or the Na+ indicator sodium binding benzofuran isophthalate (SBFI) with sharp electrodes or patch electrodes on the soma or dendrites. [Na+]i changes were detected in response to climbing fiber and parallel fiber stimulation. These changes were located both at the anatomically expected sites of synaptic contact in the dendrites and in the somatic region. The variation in time course of these [Na+]i changes in different locations implies that Na+ enters at the synapse and diffuses rapidly to locations of lower initial [Na+]i. The synaptically activated somatic [Na+]i changes probably reflect Na+ entry through voltage-sensitive Na+ channels because they were detected only when regenerative potentials were recorded in the soma. [Na+]i changes in response to antidromically or intrasomatically evoked Na+ action potentials also were confined to the cell body. These observations are in agreement with other evidence that Na+ spikes are generated in the somatic region of the Purkinje neuron and spread passively into the dendrites. Plateau potentials, evoked by depolarizing pulses to the soma or dendrites, caused [Na+]i changes only in the soma, indicating that the noninactivating Na+ channels contributing to this potential also were concentrated in this region. The climbing fiber-activated [Na+]i changes were blocked by the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione, indicating that these changes were not due to direct stimulation of the Purkinje neuron or activation of metabotropic receptors. Direct depolarization of the soma or dendrites never caused dendritic [Na+]i increases, suggesting that the climbing fiber-activated [Na+]i changes in the dendrites are due to Na+ entry through ligand-gated channels. A climbing fiber-like regenerative potential could be recorded in the soma after anode break stimulation, parallel fiber activation, or depolarizing pulses to the soma. The [Na+]i changes evoked by all of these potentials were confined to the cell body region of the Purkinje cell. [Ca2+]i changes in the dendrites evoked by the anode break potential were small relative to climbing fiber-activated changes, suggesting that a Ca2+ spike was not evoked by this response. The anode break and directly responses were blocked by tetrodotoxin. These results suggest that the somatically recorded climbing fiber response is predominantly a Na(+)-dependent event, consisting of a few fast action potentials and a slower regenerative response activating the same channels as the Na+ plateau potential.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oleuropein Attenuates Deltamethrin-induced Apoptosis in Rat Cerebellar Purkinje Neurons

Background: Deltamethrin (DM) is a synthetic pyrethroid insecticide that can elicit neurotoxicity, and lead to apoptosis. There is accumulating evidence that oleuropein (OE) has anti-apoptotic effect. This study aimed at determining the DM toxicity and anti-apoptotic effect of OE pretreatment in cerebellar Purkinje neurons. Materials and Methods: Rats were randomly divided into four groups a...

متن کامل

Dendritic calcium spikes are tunable triggers of cannabinoid release and short-term synaptic plasticity in cerebellar Purkinje neurons.

Understanding the relationship between dendritic excitability and synaptic plasticity is vital for determining how dendrites regulate the input-output function of the neuron. Dendritic calcium spikes have been associated with the induction of long-term changes in synaptic efficacy. Here we use direct recordings from cerebellar Purkinje cell dendrites to show that synaptically activated local de...

متن کامل

Power Spectral Density Analysis of Purkinje Cell Tonic and Burst Firing Patterns From a Rat Model of Ataxia and Riluzole Treated

Introduction: Purkinje Cell (PC) output displays a complex firing pattern consisting of high frequency sodium spikes and low frequency calcium spikes, and disruption in this firing behavior may contribute to cerebellar ataxia. Riluzole, neuroprotective agent, has been demonstrated to have neuroprotective effects in cerebellar ataxia. Here, the spectral analysis of PCs firing in control, 3-acety...

متن کامل

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 77 1  شماره 

صفحات  -

تاریخ انتشار 1997